Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Res ; 245: 118065, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159663

RESUMO

BACKGROUND: Some researchers have suggested that zinc (Zn) could reduce the risk of prostate cancer (PC). However, research from observational studies on the relationship between PC risk and biomarkers of Zn exposure shows conflicting results. OBJECTIVES: To evaluate the association between toenail Zn and PC, considering tumour extension and aggressiveness, along with a gene-environment approach, exploring the interaction of individual genetic susceptibility to PC in the relationship between toenail Zn and PC. METHODS: In MCC-Spain study we invited all incident PC cases diagnosed in the study period (2008-2013) and recruited randomly selected general population controls. In this report we included 913 cases and 1198 controls with toenail Zn determined by inductively coupled plasma mass spectrometry. To measure individual genetic susceptibility, we constructed a polygenic risk score based on known PC-related single nucleotide polymorphisms. The association between toenail Zn and PC was explored with mixed logistic and multinomial regression models. RESULTS: Men with higher toenail Zn had higher risk of PC (OR quartile 4 vs.1: 1.41; 95% CI: 1.07-1.85). This association was slightly higher in high-grade PC [(ISUP≤2 Relative risk ratio (RRR) quartile 4 vs.1: 1.36; 1.01-1.83) vs. (ISUP3-5 RRR quartile 4 vs.1: 1.64; 1.06-2.54)] and in advanced tumours [(cT1-cT2a RRR quartile 4 vs.1: 1.40; 95% CI: 1.05-1.89) vs. (cT2b-cT4 RRR quartile 4 vs.1: 1.59; 1.00-2.53)]. Men with lower genetic susceptibility to PC were those at higher risk of PC associated with high toenail Zn (OR quartile 4 vs.1: 2.18; 95% CI: 1.08-4.40). DISCUSSION: High toenail Zn levels were related to a higher risk for PC, especially for more aggressive or advanced tumours. This effect was stronger among men with a lower genetic susceptibility to PC.


Assuntos
Neoplasias da Próstata , Zinco , Masculino , Humanos , Zinco/análise , Estudos de Casos e Controles , Espanha/epidemiologia , Unhas/química , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Predisposição Genética para Doença , Compostos Orgânicos , Fatores de Risco
2.
Proteomics ; 23(23-24): e2300052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821362

RESUMO

Selenium is a well-known health-relevant element related with cancer chemoprevention, neuroprotective roles, beneficial in diabetes, and in several infectious diseases, among others. It is naturally present in some foods, but deficiency in people led to the production of nutraceuticals, supplements, and functional food enriched in this element. There is a U-shaped link between selenium levels and health and a narrow range between toxic and essential levels, and thus, supplementation should be performed carefully. Omics methodologies have become valuable approaches to delve into the responses of dietary selenium in mammals that allowed a deeper knowledge about the metabolism of this element as well as its biological role. In this review, we discuss omics approaches from the workflows to their applications that has been previously used to deep insight into the metabolism of dietary selenium. There is a special focus on selenoproteins, metabolomics responses in blood and tissues (e.g., brain, reproductive organs, etc.) as well as the impact on gut microbiota and its metabolites profile. Thus, we mainly reviewed heteroatom-tagged proteomics, metallomics, metabolomics, and metataxonomics, usually combined with transcriptomics, genomics, and other molecular methods.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Humanos , Selênio/farmacologia , Selênio/metabolismo , Suplementos Nutricionais , Proteômica/métodos , Genômica , Metabolômica , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762552

RESUMO

Lung cancer (LC) is the leading cause of cancer deaths, and chronic obstructive pulmonary disease (COPD) can increase LC risk. Metallomics may provide insights into both of these tobacco-related diseases and their shared etiology. We conducted an observational study of 191 human serum samples, including those of healthy controls, LC patients, COPD patients, and patients with both COPD and LC. We found 18 elements (V, Al, As, Mn, Co, Cu, Zn, Cd, Se, W, Mo, Sb, Pb, Tl, Cr, Mg, Ni, and U) in these samples. In addition, we evaluated the elemental profiles of COPD cases of varying severity. The ratios and associations between the elements were also studied as possible signatures of the diseases. COPD severity and LC have a significant impact on the elemental composition of human serum. The severity of COPD was found to reduce the serum concentrations of As, Cd, and Tl and increased the serum concentrations of Mn and Sb compared with healthy control samples, while LC was found to increase Al, As, Mn, and Pb concentrations. This study provides new insights into the effects of LC and COPD on the human serum elemental profile that will pave the way for the potential use of elements as biomarkers for diagnosis and prognosis. It also sheds light on the potential link between the two diseases, i.e., the evolution of COPD to LC.

4.
Sci Total Environ ; 903: 166558, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633382

RESUMO

Metals and pharmaceuticals contaminate water and food worldwide, forming mixtures where they can interact to enhance their individual toxicity. Here we use a shotgun proteomic approach to evaluate the toxicity of a pollutant mixture (PM) of metals (As, Cd, Hg) and pharmaceuticals (diclofenac, flumequine) on mice liver proteostasis. These pollutants are abundant in the environment, accumulate in the food chain, and are toxic to humans primarily through oxidative damage. Thus, we also evaluated the putative antagonistic effect of low-dose dietary supplementation with the antioxidant trace element selenium. A total of 275 proteins were affected by PM treatment. Functional analyses revealed an increased abundance of proteins involved in the integrated stress response that promotes translation, the inflammatory response, carbohydrate and lipid metabolism, and the sustained expression of the antioxidative response mediated by NRF2. As a consequence, a reductive stress situation arises in the cell that inhibits the RICTOR pathway, thus activating the early stage of autophagy, impairing xenobiotic metabolism, and potentiating lipid biosynthesis and steatosis. PM exposure-induced hepato-proteostatic alterations were significantly reduced in Se supplemented mice, suggesting that the use of this trace element as a dietary supplement may at least partially ameliorate liver damage caused by exposure to environmental mixtures.

5.
J Nutr Biochem ; 117: 109323, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958417

RESUMO

Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional (n=20) and mice model with microbiota depleted by antibiotics (n=20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV, and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis (e.g., members of Lachnospiraceae and Ruminococcaceae families). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.


Assuntos
Selênio , Humanos , Camundongos , Animais , Selênio/metabolismo , Eixo Encéfalo-Intestino , Selenoproteínas/genética , Selenoproteínas/metabolismo , Metaboloma , Metabolômica , Encéfalo/metabolismo , Transcriptoma , RNA Ribossômico 16S/metabolismo
6.
Food Chem Toxicol ; 171: 113519, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36464106

RESUMO

Antibiotic (Abx) treatments or inadvertent exposure to Abx-contaminated food and water can adversely affect health. Many studies show strong correlations between Abx and liver damage pointing to gut dysbiosis as a contributing factor because the gut microbiota (GM) forms a complex network with liver. Selenium (Se) is a beneficial micronutrient able to shape the composition of the GM. We analyzed here the ability of a low dose (120 µg/kg bodyweight/day) Se-enriched diet to ameliorate the effects of a 7-day intervention with an Abx-cocktail over the global health and the homeostasis of cholesterol and bile acids in the mouse liver. We found that Se restored lipid metabolism preventing the increased synthesis and accumulation of cholesterol caused by Abx treatment. Integrating these results with previous metataxonomic and metabolomic data in same mice, we conclude that part of the effect of Se against liver dysfunction (cholesterol and bile acids metabolism and transport) could be mediated by the GM. We provide data that contribute to a more complete view of the molecular mechanisms underlying the beneficial action of Se on health, pointing to a possible use of low doses of Se as a functional food additive (prebiotic) to prevent the negative effects of antibiotics.


Assuntos
Selênio , Animais , Camundongos , Selênio/farmacologia , Antibacterianos/farmacologia , Fígado , Dieta , Colesterol/metabolismo
7.
Environ Pollut ; 318: 120851, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509352

RESUMO

The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 µg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.


Assuntos
Cádmio , Urânio , Pessoa de Meia-Idade , Adulto , Humanos , Albuminúria , Espanha/epidemiologia , Cromo , Zinco , Cobalto , Molibdênio , Titânio , Bário
8.
Free Radic Biol Med ; 194: 52-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370960

RESUMO

BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.


Assuntos
Arsênio , Fraturas Ósseas , Selênio , Humanos , Cádmio , Antimônio , Densidade Óssea/genética , Oxirredução
9.
Environ Pollut ; 316(Pt 2): 120629, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370976

RESUMO

This study deals with the potential release of metal/loids from sulfide mine wastes upon weathering and the health risks associated with their accidental ingestion. To address this, a complete chemical and mineralogical characterization of a variety of sulfide mine wastes was performed alongside a determination of metal/loid bioaccessibility through leaching tests simulating human digestive and lung fluids. The mine wastes consisted predominantly of Fe (35-55% of Fe2O3) and exhibited high concentrations of trace metalloids such as As (382-4310 mg/kg), Pb (205-15,974 mg/kg), Cu (78-1083 mg/kg), Zn (274-1863 mg/kg), or Sb (520-1816 mg/kg). Most wastes with high concentrations of soluble compounds are considered hazardous according to the European regulations due to the exceedance of threshold values for As, Pb, Cr, Cu, Sb, sulfates, and Zn determined by standardized tests. In general terms, the absorption of waste-hosted metals through both digestive and respiratory routes was low compared to the total metal contents of the wastes, with values below 8% of the total concentration in wastes for most metal/loids including Cu, Zn, As, Cd, Tl, or U. However, some metals exhibited a significantly higher absorption potential, especially through the respiratory route, reaching values of up to 17% for Cr and 75% for Pb, highlighting the strong bioaccessibility of Pb in certain sulfide wastes. Despite the high metal/loid concentrations observed in the studied wastes, a health risk assessment indicated that some non-carcinogenic effects could be observed in children only following the accidental digestion of Pb.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Criança , Humanos , Poluentes do Solo/análise , Chumbo , Monitoramento Ambiental , Mineração , Metaloides/análise , Sulfetos , Metais Pesados/análise , Medição de Risco
11.
Chemosphere ; 308(Pt 3): 136474, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126739

RESUMO

Selenium (Se) is a vital trace element for many living organisms inclusive of aquatic species. Although the antagonistic action of this element against other pollutants has been previously described for mammals and birds, limited information on the join effects in bivalves is available. To this end, bivalves of the species Scrobicularia plana were exposed to Se and Cd individually and jointly. Digestive glands were analysed to determine dose-dependent effects, the potential influence of Se on Cd bioaccumulationas well as the possible recover of the oxidative stress and metabolic alterations induced by Cd. Selenium co-exposure decreased the accumulation of Cd at low concentrations. Cd exposure significantly altered the metabolome of clams such as aminoacyltRNA biosynthesis, glycerophospholipid and amino acid metabolism, while Se co-exposure ameliorated several altered metabolites such asLysoPC (14:0), LysoPE (20:4), LysoPE (22:6), PE (14:0/18:0), PE (20:3/18:4) andpropionyl-l-carnitine.Additionally, Se seems to be able to regulate the redox status of the digestive gland of clams preventing the induction of oxidativedamage in this organ. This study shows the potential Se antagonism against Cd toxicity in S. plana and the importance to study join effects of pollutants to understand the mechanism underlined the effects.


Assuntos
Bivalves , Poluentes Ambientais , Selênio , Oligoelementos , Aminoácidos/metabolismo , Animais , Bioacumulação , Bivalves/metabolismo , Cádmio/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia , Poluentes Ambientais/metabolismo , Glicerofosfolipídeos/metabolismo , Mamíferos/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selênio/toxicidade , Oligoelementos/metabolismo
12.
Environ Int ; 169: 107525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150295

RESUMO

BACKGROUND: Toenails are commonly used as biomarkers of exposure to zinc (Zn), but there is scarce information about their relationship with sources of exposure to Zn. OBJECTIVES: To investigate the main determinants of toenail Zn, including selected sources of environmental exposure to Zn and individual genetic variability in Zn metabolism. METHODS: We determined toenail Zn by inductively coupled plasma mass spectrometry in 3,448 general population controls from the MultiCase-Control study MCC-Spain. We assessed dietary and supplement Zn intake using food frequency questionnaires, residential proximity to Zn-emitting industries and residential topsoil Zn levels through interpolation methods. We constructed a polygenic score of genetic variability based on 81 single nucleotide polymorphisms in genes involved in Zn metabolism. Geometric mean ratios of toenail Zn across categories of each determinant were estimated from multivariate linear regression models on log-transformed toenail Zn. RESULTS: Geometric mean toenail Zn was 104.1 µg/g in men and 100.3 µg/g in women. Geometric mean toenail Zn levels were 7 % lower (95 % confidence interval 1-13 %) in men older than 69 years and those in the upper tertile of fibre intake, and 9 % higher (3-16 %) in smoking men. Women residing within 3 km from Zn-emitting industries had 4 % higher geometric mean toenail Zn levels (0-9 %). Dietary Zn intake and polygenic score were unrelated to toenail Zn. Overall, the available determinants only explained 9.3 % of toenail Zn variability in men and 4.8 % in women. DISCUSSION: Sociodemographic factors, lifestyle, diet, and environmental exposure explained little of the individual variability of toenail Zn in the study population. The available genetic variants related to Zn metabolism were not associated with toenail Zn.


Assuntos
Unhas , Zinco , Biomarcadores/análise , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Unhas/química , Compostos Orgânicos/análise , Solo , Espanha , Zinco/análise
13.
Mol Nutr Food Res ; 66(16): e2200071, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687731

RESUMO

SCOPE: Lack of information about the impact of maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the elemental and metabolomic profile of human milk (HM). METHODS AND RESULTS: An observational study on HM from mothers with COVID-19 is conducted including a prepandemic control group. Maternal-infant clinical records and symptomatology are recorded. The absolute quantification of elements and untargeted relative metabolomic profiles are determined by inductively coupled plasma mass spectrometry and gas chromatography coupled to mass spectrometry, respectively. Associations of HM SARS-CoV-2 antibodies with elemental and metabolomic profiles are studied. COVID-19 has a significant impact on HM composition. COVID-19 reduces the concentrations of Fe, Cu, Se, Ni, V, and Aluminium (Al) and increases Zn compared to prepandemic control samples. A total of 18 individual metabolites including amino acids, peptides, fatty acids and conjugates, purines and derivatives, alcohols, and polyols are significantly different in HM from SARS-CoV-2 positive mothers. Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine, and linoleic acid pathways are significantly altered. Differences are obtained depending on COVID-19 symptomatic and asymptomatic status. CONCLUSIONS: This study provides unique insights about the impact of maternal SARS-CoV-2 infection on the elemental and metabolomic profiles of HM that warrants further research due the potential implications for infant health.


Assuntos
COVID-19 , Leite Humano , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Leite Humano/química , Mães , Fenilalanina/análise , Fenilalanina/metabolismo , SARS-CoV-2
14.
Redox Biol ; 52: 102314, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460952

RESUMO

BACKGROUND: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. METHODS: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. RESULTS: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. CONCLUSIONS: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.


Assuntos
Arsênio , Metais Pesados , Selênio , Aminoácidos Essenciais , Arsênio/urina , Cádmio , Interação Gene-Ambiente , Humanos , Metais , Metais Pesados/urina , Oxirredução , Espanha
15.
Sci Rep ; 12(1): 4218, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273298

RESUMO

Selenium is a well-known essential element with important roles in human reproductive health mainly due to its antioxidant character. This study aimed to investigate the potential role of selenoproteins on gut microbiota and male reproductive health. A new assay for the absolute quantification of selenoproteins in testicular tissue based on two dimensional chromatography with inductively coupled plasma mass spectrometry was performed for the first time. The gut microbiota profile was obtained by 16S rRNA gene sequencing. Numerous associations were found between testicular selenoproteins and gut microbiota (e.g. Mucispirillum, related with sperm activity and testosterone, was associated with glutathione peroxidase (GPx) and selenoalbumin (SeAlb), while Escherichia/Shigella, related to sex hormones, correlated with GPx, selenoprotein P (SelP) and SeAlb). The effects of Se-supplementation on testicular selenoproteins only occur in conventional mice, suggesting a potential selenoproteins-microbiota interplay that underlies testicular function. The selenoproteins GPx and SelP have been quantified for the first time in the testicles, and the novel identification of SeAlb, a protein with nonspecifically incorporated Se, is also reported. These findings demonstrate the significant impact of Se-supplementation on gut microbiota and male reproductive health. In addition, the analytical methodology applied here in selenoprotein quantification in testicular tissue opens new possibilities to evaluate their role in gut microbiota and reproductive health axis.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Suplementos Nutricionais , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , RNA Ribossômico 16S/genética , Selênio/metabolismo , Selenoproteína P , Selenoproteínas/metabolismo
16.
Environ Res ; 210: 112959, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35189102

RESUMO

BACKGROUND: Cadmium is a ubiquitous and persistent metal, associated with different harmful health effects and with increased morbidity and mortality. Understanding the main sources of exposure is essential to identify at risk populations and to design public health interventions. OBJECTIVE: To evaluate cadmium exposure in a random-sample of general adult population from three regions of Spain, assessed by the urinary cadmium (U-Cd) concentration, and to identify its potential determinants and sex-specific differences, including sociodemographic, lifestyle and dietary factors. MATERIALS AND METHODS: We measured U-Cd (µg/g creatinine) in single urine spot samples from 1282 controls enrolled in the multicase-control study in common tumors in Spain (MCC-Spain) with inductively coupling plasma-mass spectrometry equipped with an octopole reaction systems (ICP-ORS-MS). The association between sociodemographic, lifestyle, and dietary characteristics and U-Cd concentrations was evaluated using geometric mean ratios (GMR) estimated by multiple log-linear regression models. RESULTS: Overall, geometric mean U-Cd concentration was 0.40 (95%CI: 0.38, 0.41) µg/g creatinine. Levels were higher in women than in men (GMR]: 1.19; 95%CI: 1.07, 1.32), and increased with age in males (ptrend< 0.001). Cigarette smoking was clearly associated to U-Cd levels (GMRformer vs non-smokers: 1.16; 95%CI: 1.05, 1.29; GMRcurrent vs non-smokers: 1.42; 95%CI: 1.26, 1.60); the relationship with secondhand tobacco exposure in non-smokers, was restricted to women (pinteraction = 0.02). Sampling season and region also seemed to influence U-Cd concentrations, with lower levels in summer (GMRsummer vs average: 0.79; 95%CI: 0.71, 0.88), and higher levels in North-Spain Asturias (GMRAsturias vs average: 1.13; 95%CI: 1.04, 1.23). Regarding diet, higher U-Cd concentration was associated with eggs consumption only in men (pinteraction = 0.04), just as rice intake was associated in women (pinteraction = 0.03). CONCLUSION: These results confirmed that tobacco exposure is the main modifiable predictor of U-Cd concentrations, and remark that the role of dietary/sociodemographic factors on U-Cd levels may differ by sex.


Assuntos
Cádmio , Exposição Ambiental , Adulto , Cádmio/urina , Creatinina/urina , Dieta , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Espanha
17.
Arterioscler Thromb Vasc Biol ; 42(1): 87-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879710

RESUMO

OBJECTIVE: Studies evaluating the association of metals with subclinical atherosclerosis are mostly limited to carotid arteries. We assessed individual and joint associations of nonessential metals exposure with subclinical atherosclerosis in 3 vascular territories. Approach and Results: One thousand eight hundred seventy-three Aragon Workers Health Study participants had urinary determinations of inorganic arsenic species, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten. Plaque presence in carotid and femoral arteries was determined by ultrasound. Coronary Agatston calcium score ≥1 was determined by computed tomography scan. Median arsenic, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten levels were 1.83, 1.98, 0.27, 1.18, 0.05, 9.8, 0.03, 0.66, and 0.23 µg/g creatinine, respectively. The adjusted odds ratio (95% CI) for subclinical atherosclerosis presence in at least one territory was 1.25 (1.03-1.51) for arsenic, 1.67 (1.22-2.29) for cadmium, and 1.26 (1.04-1.52) for titanium. These associations were driven by arsenic and cadmium in carotid, cadmium and titanium in femoral, and titanium in coronary territories and mostly remained after additional adjustment for the other relevant metals. Titanium, cadmium, and antimony also showed positive associations with alternative definitions of increased coronary calcium. Bayesian Kernel Machine Regression analysis simultaneously evaluating metal associations suggested an interaction between arsenic and the joint cadmium-titanium exposure. CONCLUSIONS: Our results support arsenic and cadmium and identify titanium and potentially antimony as atherosclerosis risk factors. Exposure reduction and mitigation interventions of these metals may decrease cardiovascular risk in individuals without clinical disease.


Assuntos
Aterosclerose/induzido quimicamente , Doenças das Artérias Carótidas/induzido quimicamente , Doença da Artéria Coronariana/induzido quimicamente , Artéria Femoral/efeitos dos fármacos , Metais/efeitos adversos , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Adulto , Antimônio/efeitos adversos , Antimônio/urina , Arsênio/efeitos adversos , Arsênio/urina , Doenças Assintomáticas , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Aterosclerose/urina , Biomarcadores/urina , Cádmio/efeitos adversos , Cádmio/urina , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/urina , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/urina , Estudos Transversais , Feminino , Artéria Femoral/diagnóstico por imagem , Humanos , Masculino , Metais/urina , Pessoa de Meia-Idade , Placa Aterosclerótica , Medição de Risco , Fatores de Risco , Espanha/epidemiologia , Titânio/efeitos adversos , Titânio/urina
18.
J Proteome Res ; 21(3): 758-767, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734730

RESUMO

Selenium (Se) is an essential trace element with important health roles due to the antioxidant properties of selenoproteins. To analyze the interplay between Se and gut microbiota, gut metabolomic profiles were determined in conventional (C) and microbiota depleted mice (Abx) after Se-supplementation (Abx-Se) by untargeted metabolomics, using an analytical multiplatform based on GC-MS and UHPLC-QTOF-MS (MassIVE ID MSV000087829). Gut microbiota profiling was performed by 16S rRNA gene amplicon sequencing. Significant differences in the levels of about 70% of the gut metabolites determined, including fatty acyls, glycerolipids, glycerophospholipids, and steroids, were found in Abx-Se compared to Abx, and only 30% were different between Abx-Se and C, suggesting an important effect of Se-supplementation on Abx mice metabolism. At genus level, the correlation analysis showed strong associations between metabolites and gut bacterial profiles. Likewise, higher abundance of Lactobacillus spp., a potentially beneficial genus enriched after Se-supplementation, was associated with higher levels of prenol lipids, phosphatidylglycerols (C-Se), steroids and diterpenoids (Abx-Se), and also with lower levels of fatty acids (Abx-Se). Thus, we observed a crucial interaction between Se intake-microbiota-metabolites, although further studies to clarify the specific mechanisms are needed. This is the first study about untargeted gut metabolomics after microbiota depletion and Se-supplementation.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Suplementos Nutricionais , Microbioma Gastrointestinal/genética , Metabolômica , Camundongos , RNA Ribossômico 16S/genética , Selênio/farmacologia
19.
Environ Res ; 204(Pt B): 112021, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516978

RESUMO

BACKGROUND: Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS: In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS: The median for the sum of urine inorganic and methylated As species (ΣAs) (µg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (µg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS: While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.


Assuntos
Arsênio , Arsênio/toxicidade , Bangladesh , Metilação de DNA , Epigênese Genética , Humanos , Lectinas Tipo C , Masculino , Proteínas Nucleares , Receptores Mitogênicos , Espanha
20.
J Agric Food Chem ; 69(27): 7652-7662, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34171188

RESUMO

Selenium (Se) is a micronutrient involved in important health functions and it has been suggested to shape gut microbiota. Limited information on Se assimilation by gut microbes and the possible link with selenoproteins are available. For this purpose, conventional and gut microbiota-depleted BALB/c mice were fed a Se-supplemented diet. The absolute quantification of mice plasma selenoproteins was performed for the first time using heteroatom-tagged proteomics. The gut microbiota profile was analyzed by 16S rRNA gene sequencing. Se-supplementation modulated the concentration of the antioxidant glutathione peroxidase and the Se-transporter selenoalbumin as well as the metal homeostasis, being influenced by microbiota disruption, which suggests an intertwined mechanism. Se also modulated microbiota diversity and richness and increased the relative abundance of some health-relevant taxa (e.g., families Christensenellaceae, Ruminococcaceae, and Lactobacillus genus). This study demonstrated the potential beneficial effects of Se on gut microbiota, especially after antibiotic-treatment and the first associations between specific bacteria and plasma selenoproteins.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Antibacterianos , Suplementos Nutricionais , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , RNA Ribossômico 16S/genética , Selenoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...